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X-axis: Non-GPU tasks
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Beware of Fragmentation:
Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent

A defective definition of fragmentation 
in absolute terms — “a node is frag-
mented if and only if it cannot run any 
task”. Task skyline determines the frag / 
non-frag boundary, yet, only 0.06% task 
instances belong to the skyline ☹

Definition of GPU Fragmentation:
The absolute measure is defective. Be statistical

Our statistical definition:
Summed by each task’s own 
view of node fragmentation, 
weighted by their popularity.

Fragmentation rate: the likelihood of tasks in fragmentation regions:
☺ Aware of workload distribution while stable to small changes.
☺ Break down fragmentation into Deficient and Stranded.
☺ Independent of scheduling policy and node distribution.

For each task m in task set M,
(pm : task popularity)

Sum the fragmentation viewed by task m
𝐹! 𝑀 = ∑"∈$ 𝑝"𝐹!(𝑚)

Schedule Alg.: Fragmentation Gradient Descent Formal Description of Computation 𝐹!(𝑚)
• Case 1: All Residuals are Frag. (Q-I, Q-II, Q-IV, x-axis):

𝐹! 𝑚 = ∑"#$#%! 𝑅!,$
%'( Residual resource on GPU g Node n

𝐺!: GPU set on node n 

• Case 2: Partial or No Residuals are Frag. (Q-III):

𝐹! 𝑚 = ∑"#$#%! 𝑅!,$
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Evaluation: Schedule 8k tasks to 6.2k GPUs (1.2k nodes)

Trace & Code

FGD allocates more 
GPUs across a variety 
of settings. See more 
results and task 
distributions in paper 
and code.

FGD: Lowest Frag. Rate & Fewest GPUs Unallocated

Yet, GPU sharing doesn’t always improve allocation. 
Often, allocating partial GPUs results in fragmentation

Classical multi-resource bin-packing cannot work 
effectively on GPUs due to formulation mismatch
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#2: produces deformable
task resource vector

#1: ignores GPU 
allocation boundary

Absolute fragmentation stays low (<5%)
throughout scheduling simulation (8k 
tasks to 6.2k GPUs) —☹ fail to provide 
useful feedback to the scheduling quality

Compared to existing packing-based schedulers, FGD pursues the lowest fragmentation and fewest GPUs unallocated:

GPU sharing lets multiple tasks run on a 
single GPU, via DL framework 
manipulation, or CUDA API interception, 
or hardware-assisted methods (e.g., MIG).

← Sharing saves 50% GPUs in Alibaba [1].

Avg. 25-50% GPU utilization in production MLaaS clouds [1-3]. [1] Weng et al., “MLaaS in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters,” in NSDI 2022.
[2] Hu et al., “Characterization and prediction of deep learning workloads in large-scale GPU datacenters,” in SC 2021.
[3] Narayanan et al., “Heterogeneity-aware cluster scheduling policies for deep learning workloads,” in OSDI 2020

ML-as-a-Service clouds suffer low GPU utilization GPU sharing comes to rescue

Neither of these formulation 
attempts works: (1) treating multiple 
GPUs as a unified logical device;
(2) treating each GPU as an in-
dependent resource dimension.

In many clusters, the GPU 
allocation rate can reach 
85-90% maximum, leaving 
hundreds of GPUs unable 
to allocate!

Many users experienced 
scheduling failures even 
with sufficient GPU 
allocation quotas.

Insufficient GPUs on nodes 
given the requests of tasks

Insufficient CPUs 
(or stranded GPUs)

GPU-1 0.9

0.4GPU-2

CPU 16 CPUs

Trace: 8k Tasks and 1.2k nodes with 6.2k GPUs

Schedule Tasks towards the 
Steepest Descent of Fragmentation

Paper

TL;DR: We propose a novel measure of fragmentation to statistically quantify the degree of GPU fragmentation caused by different sources.
Based on this measure, we invent a scheduling policy FGD that packs tasks to minimize the growth of fragmentation and maximize GPU allocation.

FGD reduces unallocated GPUs by up 
to 49%, utilizing additional 290 GPUs.


