
Fragmentation region:
Q-I, Q-II: insufficient GPU
Q-IV: Stranded GPU
X-axis: Non-GPU tasks

Qizhen Weng†∗ Lingyun Yang†∗ Yinghao Yu^† Wei Wang† Xiaochuan Tang^ Guodong Yang^ Liping Zhang^
†: Hong Kong University of Science and Technology ^: Alibaba Group (*: equal contribution)

Beware of Fragmentation:
Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent

A defective definition of fragmentation
in absolute terms — “a node is frag-
mented if and only if it cannot run any
task”. Task skyline determines the frag /
non-frag boundary, yet, only 0.06% task
instances belong to the skyline ☹

Definition of GPU Fragmentation:
The absolute measure is defective. Be statistical

Our statistical definition:
Summed by each task’s own
view of node fragmentation,
weighted by their popularity.

Fragmentation rate: the likelihood of tasks in fragmentation regions:
☺ Aware of workload distribution while stable to small changes.
☺ Break down fragmentation into Deficient and Stranded.
☺ Independent of scheduling policy and node distribution.

For each task m in task set M,
(pm : task popularity)

Sum the fragmentation viewed by task m
𝐹! 𝑀 = ∑"∈$ 𝑝"𝐹!(𝑚)

Schedule Alg.: Fragmentation Gradient Descent Formal Description of Computation 𝐹!(𝑚)
• Case 1: All Residuals are Frag. (Q-I, Q-II, Q-IV, x-axis):

𝐹! 𝑚 = ∑"#$#%! 𝑅!,$
%'(Residual resource on GPU g Node n

𝐺!: GPU set on node n

• Case 2: Partial or No Residuals are Frag. (Q-III):

𝐹! 𝑚 = ∑"#$#%! 𝑅!,$
%'(𝟙 𝑅!,$%'(< min{𝐷)%'(, 1}

1, if remaining resource is smaller than the demand of task m, else 0.Node A Node B

② 𝐹!+= 10

② 𝐹"+= -20

③ √
① ①

Task
m

①

②

③

Evaluation: Schedule 8k tasks to 6.2k GPUs (1.2k nodes)

Trace & Code

FGD allocates more
GPUs across a variety
of settings. See more
results and task
distributions in paper
and code.

FGD: Lowest Frag. Rate & Fewest GPUs Unallocated

Yet, GPU sharing doesn’t always improve allocation.
Often, allocating partial GPUs results in fragmentation

Classical multi-resource bin-packing cannot work
effectively on GPUs due to formulation mismatch

0 GPU

2 CPUs

0.4 GPU

0.4 GPU

2 CPUs

0 GPU

1-GPU Task 1.3 GPUs

Logical GPU
√

×

2-CPU, 0.4-GPU Task
?

#2: produces deformable
task resource vector

#1: ignores GPU
allocation boundary

Absolute fragmentation stays low (<5%)
throughout scheduling simulation (8k
tasks to 6.2k GPUs) —☹ fail to provide
useful feedback to the scheduling quality

Compared to existing packing-based schedulers, FGD pursues the lowest fragmentation and fewest GPUs unallocated:

GPU sharing lets multiple tasks run on a
single GPU, via DL framework
manipulation, or CUDA API interception,
or hardware-assisted methods (e.g., MIG).

← Sharing saves 50% GPUs in Alibaba [1].

Avg. 25-50% GPU utilization in production MLaaS clouds [1-3]. [1] Weng et al., “MLaaS in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters,” in NSDI 2022.
[2] Hu et al., “Characterization and prediction of deep learning workloads in large-scale GPU datacenters,” in SC 2021.
[3] Narayanan et al., “Heterogeneity-aware cluster scheduling policies for deep learning workloads,” in OSDI 2020

ML-as-a-Service clouds suffer low GPU utilization GPU sharing comes to rescue

Neither of these formulation
attempts works: (1) treating multiple
GPUs as a unified logical device;
(2) treating each GPU as an in-
dependent resource dimension.

In many clusters, the GPU
allocation rate can reach
85-90% maximum, leaving
hundreds of GPUs unable
to allocate!

Many users experienced
scheduling failures even
with sufficient GPU
allocation quotas.

Insufficient GPUs on nodes
given the requests of tasks

Insufficient CPUs
(or stranded GPUs)

GPU-1 0.9

0.4GPU-2

CPU 16 CPUs

Trace: 8k Tasks and 1.2k nodes with 6.2k GPUs

Schedule Tasks towards the
Steepest Descent of Fragmentation

Paper

TL;DR: We propose a novel measure of fragmentation to statistically quantify the degree of GPU fragmentation caused by different sources.
Based on this measure, we invent a scheduling policy FGD that packs tasks to minimize the growth of fragmentation and maximize GPU allocation.

FGD reduces unallocated GPUs by up
to 49%, utilizing additional 290 GPUs.

